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Residual magnetic entropy and metastable states of the 
Edwards-Anderson Ising spin glass 

J Jacklet and W KinzelS 
t Fakultat fur Physik, Universitat Konstanz, D-7750 Konstanz, FRG 
$ Institut fur Festkorperforschung, KFA Julich, D-5170 Julich, FRG 

Received 11 June 1982, resubmitted 17 December 1982 

Abstract. The residual magnetic entropy is calculated for the short-range Edwards- 
Anderson spin-glass model by the Monte Carlo method. For slow cooling, a finite value 
of the residual magnetic entropy is obtained, which depends only weakly on the cooling 
rate. A comparison with available information about the total density of states and the 
density of metastable states suggests that the residual magnetic entropy is determined by 
the density of metastable states at the residual energy of the spin glass at zero temperature. 

Relaxation phenomena occurring on long time scales are a characteristic feature of 
spin glasses (for a recent review see Mydosh (1981)). Theoretically, such effects have 
been observed in numerical studies of the short-range Edwards-Anderson Ising model 
(for a recent review see Binder and Kinzel (1981)). These results, both theoretical 
and experimental, support the interpretation of the spin-glass transition as a non- 
equilibrium dynamic phenomenon (Morgenstern and Binder 1979) associated with 
the time scale Tabs of experimental observation. For times t < 7&s the system samples 
only a small part of the total phase space. Information regarding the fraction of the 
accessible phase space and the number of configurations or ‘valleys’ in which the 
system can settle may be obtained from the residual magnetic entropy. In this respect 
the spin-glass transition resembles the freezing process of ordinary glasses. The 
concept of the residual entropy of ordinary glasses has been discussed recently by 
Jackle (1981). Owing to the small width of the transformation range and the metasta- 
bility of the glass phase, the residual entropy obtained from specific heat measurements 
determines the number of metastable glass configurations with good accuracy. It is 
the main purpose of this letter to examine whether also in spin glasses the residual 
magnetic entropy, which determines the number of spin configurations populated at 
zero temperature, can be derived from thermodynamic measurements. 

Irrespective of the uncertainty of its physical significance below T,, an ‘experimental 
entropy curve’ S,,,(T) can be calculated from a measured specific heat curve C ( T )  
using the thermodynamic formula 

For the king spin-; model to be used in the Monte Carlo (MC) calculation, one has 

@ 1983 The Institute of Physics L163 



L164 Letter to the Editor 

where N is the number of Ising spins. In the non-equilibrium region below Tf, the 
temperature T is defined as the temperature of a heat bath which determines the 
transition probabilities in the MC process. At zero magnetic field H the specific heat 
is given by the temperature derivative of the internal magnetic energy U ( T ) :  

C ( T )  = a u / a T I H = o .  (3) 

By partial integration (1) is transformed into 

which yields the entropy directly in terms of U(T) .  

isothermal energy fluctuations by 
In thermodynamic or metastable equilibrium, the specific heat is related to the 

We shall compare MC data for the two different kinds of specific heat given by (3) 
and ( 5 )  and estimate the width of the transition region from observed differences 
between the two quantities. If this transition region has a relatively small width and 
contributes little to the entropy integral, the zero-temperature entropy S,,,(O) obtained 
from (1) or (4) should be a good approximation to the residual entropy related to the 
number of different spin configurations occurring at absolute zero (Jackle 1981). If, 
however, this width is large, the significance of the value S,,,(O) can only be tested 
by comparison with a statistical-mechanical calculation of the residual entropy. 

We have performed MC calculations for the two-dimensional Edwards-Anderson 
Ising spin glass of 60x60 spins on a square lattice with a Gaussian distribution of 
nearest-neighbour couplings. First we report the results of entropy calculations 
obtained from the internal magnetic energy U ( T )  using (4). The energy curve U ( T )  
was calculated in temperature steps of 0.1 (in units of the root-mean-square fluctuation 
of the exchange coupling constants U).  The spin system started in a random spin 
configuration at T = 1.5 and was cooled continuously from this temperature at different 
cooling rates. A value for U ( T )  was obtained by averaging the total energy over the 
MC trajectory in the corresponding temperature interval. We calculated entropy curves 
S,,,(T) for different values of the inverse cooling rate given by the length At (in 
MCS/spin) of the MC trajectory in each temperature interval. The maximum value 
of At was 1600 MCS/spin. Contrary to the entropy derived from the partition function 
summed over all spin space (Morgenstern and Binder 1980), the entropy curves have 
non-zero values SeX,(O) for temperature zero. The dependence of these entropy values 
on cooling rate is shown in figure 1. From the variation of the results of different MC 
runs, the error is estimated to be about 10%. The data of figure 1 are compatible 
with the existence of a plateau with regard to the dependence of the values of S,,,(O) 
on the cooling rate. If it is assumed that a plateau does exist, a probable value of the 
plateau is 

(6 )  
Estimating from this result the residual experimental magnetic entropy which is to be 
expected from measurements on a real spin glass, one has to bear in mind that a spin 
in the Edwards-Anderson model corresponds to some spin cluster in the dilute 
magnetic alloy (Binder 1977). 

Sexp(0)/k~N = 0.04 f 0.01. 
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Figure 1. Dependence of the calculated 'residual experimental magnetic entropy' S,.,(O) 
on the inverse cooling rate Ar. (The broken line is only a guide to the eye.) 

Next we have tested the validity of the fluctuation formula ( 5 )  for the specific heat. 
To obtain Cau(T), the energy fluctuations were sampled over a MC trajectory of 
1000 MCS/spin at each temperature. Each trajectory started from a spin configuration 
which had been prepared before by slow cooling in (24000 MCS/spin) down to T = 0.1. 
Figure 2 shows the data for CAu(T), averaged over ten different MC runs, together 
with the results for the energy derivative C ( T ) .  Between T = 1.0 (which corresponds 
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Figure 2. Specific heats derived from energy ( C )  and energy fluctuations (CA") as a 
function of temperature. 
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to the freezing temperature Tf)  and T = 0.5 the specific heat CA" derived from the 
energy fluctuations is significantly lower than C. (The differences between CA,, and 
C at higher temperatures are statistically not significant.) As a consequence, the 
entropy Sexp(  T )  calculated from CA" ( T )  decreases more slowly with decreasing tem- 
perature than that derived from C ( T ) .  The resulting difference between the zero- 
temperature limits of both types of entropy curves is 

[ ( s e x p ( o ) ) A U  - (Sexp(O))Ul/(kBN) = 0.02. (7) 

We have checked whether this result depends on the particular choice of the initial 
spin configuration of our MC trajectories and found nearly identical results for a cooling 
process which started from a high-temperature spin configuration at the maximum 
temperature. Clearly, the discrepancy between the two results for the specific heat 
shown in figure 2 is a manifestation of the non-equilibrium behaviour of the spin-glass 
model on the time scale of our MC experiment. We conclude that on this time scale 
the spin-glass transition region, over which the spin-glass freezing occurs, is very broad 
and extends from Tf down to Tf/2 .  This finding is in marked contrast with the 
comparatively narrow width of the glass transition region of ordinary glasses. 

To provide a basis for the discussion of the observed specific heat difference and 
the associated width of the transition region, an analysis of the spin-glass transition 
is now presented which extends the analysis of the ordinary glass transition in terms 
of configurations (Jackle 1981). The continuous freezing process of the spin glass is 
idealised as a sequence of many discrete freezing steps at which the spin phase space 
is split successively. At a particular step at temperature T a single configuration with 
phase space R which is occupied at T + AT is split into several configurations i with 
phase space ai. Only one of these configurations is occupied in a particular sample 
at T - AT. It is assumed that at the higher temperature T + AT the occupation of the 
different parts of R corresponds to thermal equilibrium at this temperature, whereas 
the probability of finding the system in configuration i at T -AT is given by a quenched 
probability p ?  which may be different from the equilibrium probability pi(T -AT) 
that would exist at this temperature if no freezing occurred. Averaging over the 
different possibilities for trapping the system in different configurations i ,  the following 
formula for the difference between the two kinds of specific heat is obtained: 

C ( T ) - C w ( T )  

E (2AT)-'[ U (  T + AT) - U (  T - AT)] -$[CALI (T  + AT) + CALI (T  - AT)] 

Here, Ui(T)  is the internal energy of the system at temperature T averaged over the 
cell of phase space corresponding to configuration i. According to (8) the observed 
positive sign of the difference between C and CAu implies a negative correlation 
between the deviation of the quenched probability pT from the equilibrium probability 
pi (T)  on one side and the average energy U i ( T )  of a Configuration on the other. The 
configurations with higher energy tend to freeze out faster than would correspond to 
thermal equilibrium. A satisfactory explanation for this tendency is still lacking. Krey 
(1982) has recently suggested a simple picture which can account for our observed 
difference in specific heats. He suggests that, as the temperature is increased, the 
system performs 'Barkhausen jumps' from one metastable state to another with a 
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lower free energy (in zero magnetic field). At each jump a step should occur both in 
the magnetisation M ( T )  and the internal energy U ( T )  (see figure 3). If one assumes 
that the specific heat given by the slope of U (  T )  between two successive ‘Barkhausen 
jumps’ is just the specific heat CAu connected with thermal energy fluctuations and 
C is the temperature derivative of the smeared energy curve, it follows that 

c > CALI  

in agreement with our observation. A difficulty related to this picture is, however, 
that it would lead to a different result for the energy curve measured upon cooling, 
which is contrary to our observations. It should also be noted that a freezing step, 
as described in the analysis presented above, does not lead to a discontinuity of the 
internal energy. 

t , Slope C 
,Slope C,, 
, 

T 0 

Figure 3. The staircase-like energy function U ( T )  displaying ‘Barkhausen jumps’ 
(schematic). 

It has been pointed out above that the margin of error attached to the value 
obtained for the residual experimental entropy Sexp(0)’ is appreciable and that the 
thermodynamic significance of this quantity is in doubt because of the large width of 
the spin-glass transition region. On the other hand, for every particular cooling 
program which extends down to zero temperature, a well defined residual magnetic 
entropy S(0) exists which is determined by the occupation probabilitiespt (0) of different 
spin states at zero temperature: 

S(0) = -kB C Pi(0) In pi(0). (9) 

It is this quantity that one would like to know. The question is how closely this 
‘statistical’ residual entropy is approximated by the residual experimental entropy 
Sex,(0) obtained from the specific heat measured in the computer experiment. It is 
now shown that a comparison of S,,(O) with an estimated upper bound to S(0) 
suggests that both quantities agree within about a factor of two. 

For the single-spin flip dynamics used in our MC calculations spin states occurring 
at absolute zero have to be stable against single-spin flips at T = 0. Such states are 
termed ‘metastable states’. Therefore, in (9) the sum extends only over metastable 
states. If, for a given cooling rate, the MC trajectories end at zero temperature in 
metastable states with energies 

i 

Ei = U(O)[l+ 0 ( N - ” 2 ) ] ,  (10) 
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which are close to the average internal energy U(O), the density of metastable states 
Ns(U(0)) at this energy yields an upper limit to (9) for S(0): 

s(0) k B  hl Ns(U(0)) .  (11) 
The density of metastable states Ns(E)  for the infinite-range Ising spin glass has been 
calculated by Tanaka and Edwards (1980) and Bray and Moore (1981). For the 
short-range Edwards-Anderson model Bray and Moore (1981) calculated the first 
correction term in an expansion of In Ns(E)  in powers of z-l, where z is the number 
of nearest neighbours. For the square lattice z =4.  In this case Bray and Moore’s 
result should yield a good approximation to Ns(E)-except for the vicinity of the 
ground state energy Eo, in which we are mainly interested! The ground state energy 
of our model was determined by Morgenstern and Binder (1980) as 

Eo= (-1.31 *Oo.O1)AJ. (12) 
In their paper Morgenstern and Binder calculated thermodynamic equilibrium quan- 
tities by integrating over the entire spin space. Below Eo, the density of states is, of 
course, zero. From Bray and Moore’s expansion one would obtain a finite density of 
metastable states at Eo, namely 

( I /N)  In Ns(Eo)IBM=O.ll. (13) 
However, this result would imply that the spin glass has a finite residual entropy also 
in thermodynamic equilibrium, which contradicts Morgenstern and Binder’s (1980) 
findings. It follows from the data of these authors that the equilibrium residual entropy 
is either zero or very small compared with the value given by (13). The reason why 
Bray and Moore’s result is in error close to Eo seems to be that the first two terms 
of the expansion in 2-l do not determine the ground state energy with sufficient 
accuracy. (Incidentally, Bray and Moore’s calculation becomes invalid below a critical 
energy E,  which is close to, but lower than, our EO.) For estimating the correct density 
of metastable states Ns(E)  near Eo, it is useful to derive the total density of spin states 
N ( E )  from the equilibrium entropy S,,(T) as calculated by Morgenstern and Binder. 
From their result for low temperatures 

Seq(T) = 0.3Nk;TlAJ (14) 
which implies a linear specific heat, we deduce the equilibrium entropy as a function 
of residual energy ( E  -Eo): 

Seq(E)/kBN = [0.6(E - E O ) / ( N ~ ) ] ” ~ .  (15) 
The equilibrium entropy is, on the other hand, determined by the total density of 
states N ( E )  via 

(16) Seq(E) = k B  hl N ( E )  

if the energy spread A E  of the macroscopic state is only of O ( J 9 ,  as is normally 
the case. Combining (15) and (16), we obtain for the total density of states 

(17) 
In figure 4 this function (full line) is plotted together with the result for N-’  In Ns(E)  
obtained from Bray and Moore’s z-l expansion (dotted line). The broken line in this 
figure represents an estimate for the density of metastable states which is consistent 
with the upper limits given by the two other curves. Here it was taken into account 

(l /N) In N ( E )  = [0.6(E -Eo) / (NAJ)]”2 .  
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Figure 4. Various entropies as a function of residual energy. Full line: equilibrium entropy; 
dotted line: N-' In Ns(E) from z-' expansion; broken line: estimate for N-' In N s ( E ) ;  
points: Monte Carlo data for residual experimental entropy (see text). 

that Bray and Moore's result should be fairly accurate for (E -Eo) / (NAJ)  3 0.10. It 
turns out (figure 4) that this estimate agrees within error with the MC data, obtained 
for different cooling rates, for the residual experimental entropy S,,,(O) plotted against 
the residual energy (U(0)  -EO). The error bars for these data are mainly due to the 
uncertainty of the ground state energy Eo given by (12). Accordingly the residual 
experimental entropy is approximately equal to the upper limit (11) to S(0) :  

SexJO) k g  In Ns(U(0) ) .  (18) 

Therefore, if the upper bound (11) is a good approximation to S(O) ,  the statistical 
residual entropy S (0) and the residual experimental entropy Se,,(0) are approximately 
equal. It seems very plausible indeed to assume that this latter condition is fulfilled. 
The condition is valid if a finite fraction r, which is independent of the size N of the 
system, of the metastable states at a given energy is accessible during the cooling 
process and has a finite occupation probability pi (0 )  at zero temperature. To violate 
the equality in relation (11) it would be necessary that, for example, only a fraction 
r of order exp(-aN), where (Y is a positive constant, of the metastable states of energy 
U(0)  is reached at T = 0. There is no obvious reason why such a selection of metastable 
states should take place in a random system of this kind. 

The results and conclusions of this letter are now summarised. It has been inferred 
from the failure of the thermodynamic formula for energy fluctuations that the width 
of the spin-glass transition is appreciable. This casts doubt on the thermodynamic 
significance of the value obtained numerically for the residual experimental entropy, 
but a comparison with information derived from the equilibrium entropy curve and 
from a calculated density of metastable states suggests that our numerical results 
approximate the true residual entropy S(0) within about a factor of two. It is proposed 
that S(0) is determined by the residual energy (U(O)-Eo) of the spin glass at T = 0 
and the density of metastable states Ns(E)  at this energy. The precise form of the 
Ns(E)  curve near the ground state energy Eo has yet to be calculated. 
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